Neutralization of Gating Charges in Domain II of the Sodium Channel α Subunit Enhances Voltage-Sensor Trapping by a β-Scorpion Toxin

نویسندگان

  • Sandrine Cestèle
  • Todd Scheuer
  • Massimo Mantegazza
  • Hervé Rochat
  • William A. Catterall
چکیده

beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Sensor–Trapping Enhanced Activation of Sodium Channels by β-Scorpion Toxin Bound to the S3–S4 Loop in Domain II

Polypeptide neurotoxins alter ion channel gating by binding to extracellular receptor sites, even though the voltage sensors are in their S4 transmembrane segments. By analysis of sodium channel chimeras, a beta-scorpion toxin is shown here to negatively shift voltage dependence of activation and enhance closed state inactivation by binding to a receptor site that requires glycine 845 (Gly-845)...

متن کامل

Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels.

Beta-scorpion toxins specifically modulate the voltage dependence of sodium channel activation by acting through a voltage-sensor trapping model. We used mutagenesis, functional analysis and the action of beta-toxin as tools to investigate the existence and role in channel activation of molecular interactions between the charged residues of the S2, S3 and S4 segments in domain II of sodium chan...

متن کامل

Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels.

Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for th...

متن کامل

Inhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II.

ProTx-II, an inhibitory cysteine knot toxin from the tarantula Thrixopelma pruriens, inhibits voltage-gated sodium channels. Using the cut-open oocyte preparation for electrophysiological recording, we show here that ProTx-II impedes movement of the gating charges of the sodium channel voltage sensors and reduces maximum activation of sodium conductance. At a concentration of 1 microM, the toxi...

متن کامل

β-Scorpion Toxin Modifies Gating Transitions in All Four Voltage Sensors of the Sodium Channel

Several naturally occurring polypeptide neurotoxins target specific sites on the voltage-gated sodium channels. Of these, the gating modifier toxins alter the behavior of the sodium channels by stabilizing transient intermediate states in the channel gating pathway. Here we have used an integrated approach that combines electrophysiological and spectroscopic measurements to determine the struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2001